Measurement of Drell-Yan longitudinal double spin asymmetry in polarized *pp* collisions at PHENIX

Darshana Perera, Stephen Pate
University of Virginia, New Mexico State University

DNP October Meeting 14th October 2016 Vancouver, CA

Motivation

- Spin dependent quark distribution
 Polarized Parton distribution function (pPDF)
 - $\Delta q(x)$: Δu and Δd are well known from the (SI)DIS data
 - $\Delta \bar{q}(x)$: $\Delta \bar{u}$ and $\Delta \bar{d}$ measured with larger uncertainties
- Drell-Yan A_{LL} can cleanly access Δ \bar{u} / \bar{u} which gives the anti-quark helicity distributions in the nucleon sea

u-quark dominates in p+p
(84% of time Drell-Yan involves a u quark)

No fragmentation functions are needed for the interpretation of Drell-Yan process

Drell-Yan Measurement at PHENIX

- We are interested in the Drell-Yan process between 4.5 GeV < M < 8 GeV of invariant mass
- We observe prompt muons from DY and Displaced muon tracks from heavy quark decays
- The PHENIX FVTX can help to reduce the dominant background from beauty decays in forward arm acceptance (1.2< $|\eta|$ <2.4) in low x (~2×10⁻³).
- The physics goal is to study the DY cross section,
 pT dependence, and relative yield of HF to DY
- These measurement will be used to extract double spin asymmetry (with limited statistics) and building towards the future measurements

 x_1 and x_2 in PHENIX Forward region for 510 GeV p + p

RHIC as a Polarized p + p Collider

Run 12 Luminosity

- narrow vertex (|z|< 10 cm) : 10 pb⁻¹

Run 13 Luminosity

- narrow vertex (|z|< 10 cm) : 50 pb⁻¹

Run 12 Average Proton Polarization - 52%

Run 13 Average Proton Polarization - 52%

10/14/2016 4

PHENIX Detectors

- Muons and Hadrons in the forward regions
 - Mu ID
 - Mu Trackers
 - RPC
 - FVTX

- FVTX for forward tracking
- 4 planes per end-cap
- Coverage
 - $1.2 < |\eta| < 2.4$
 - 2π in φ
 - |z| < 15 cm
- Resolution
 - Hit ~ 25μm
 - DCAR ~ 150μm (Combined VTX and FVTX)

Introduction to Tracklets

- Two hits in FVTX detector + the primary vertex / three hits in FVTX can be used to reconstruct a tracklet
- For each event, we observe tracklets in both arms of FVTX
- We count the number of tracklets pointing to the primary vertex

10/14/2016

2 or more hits

reconstructs a tracklet

Comparison of the Tracklet Activity in FVTX

A jet generate more tracklets in FVTX than the Drell-Yan event

- The simulation show that the tracklet distribution in FVTX is a powerful tool to separate Drell-Yan from the heavy flavor backgrounds
- Comparison of J/Psi simulations and Run 13 Data shows that tracklet simulations match with the Data

Analysis Procedure

- Main challenge is to determine the signal fraction in our data
- Simulated events are plotted in to two dimensional histograms of Number of Tracklets Vs. Mass (For Drell-Yan, $b\bar{b}$ and $c\bar{c}$)
- Fit the histograms with 2-D functions and obtain the templates for the simulated signal and backgrounds

$$f_{DY}(x,y) = exp(ax + bx^2) \cdot \left(\frac{c+d*x}{e+f*x}\right)^{y/(e+f*x)}.$$

$$\frac{exp(-((c+dx)/(e+fx)))}{Gamma((y/(e+f*x))+1)}.(g+h*y+iy^2)$$

Analysis Procedure

 $f_{Final}^{+-}(x,y) = A.f_{DY} + B.f_{b\bar{b}} + C.f_{c\bar{c}} + 2.\sqrt{D*E}.f_{comb}$

D and E come from the likesign fitting

Analysis Procedure

$$A_{LL} = \frac{\Delta \sigma}{\sigma} = \frac{1}{|P_1 P_2|} \frac{N_{++} / L_{++} - N_{+-} / L_{+-}}{N_{++} / L_{++} + N_{+-} / L_{+-}}$$

- Inclusive asymmetries and signal and background fractions are measured at two mass bins and four tracklet bins.
- Then they are used to extract the A_{LL}^{DY} .

$$A_{LL}^{inc} = \left(1 - F_{hf} - F_{comb}\right).A_{LL}^{DY} + F_{hf}.A_{LL}^{hf} + F_{comb}.A_{LL}^{comb}$$

$$F_x$$
 = Fraction for process x $A_{ll}^x = A_{LL}$ for process x

Summary

- Correlated $b\bar{b}$, $c\bar{c}$ and the combinatorial background are the sources of background for the Drell-Yan measurement for the high mass region
- PHENIX muon tracker and FVTX play a major role in the forward arm Drell-Yan Measurements
- Analysis Method for determining signal fraction: Likelihood fitting with 2-D templates
 - Tracklet count distribution Vs Mass
- Measured quantities
 - Measuring the Drell-Yan signal fraction
 - Measuring the Drell-Yan longitudinal double spin asymmetry
- Currently, we are working on
 - Measure the Drell-Yan cross section

Backup

Backup

PHYSICAL REVIEW D 71, 012003 (2005)

